Benha University
Faculty of Engineering- Shoubra
Eng. Mathematics \& Physics Department
Preparatory Year
为为

Final Term Exam
Date: May 30, 2015
Course: Mathematics 1 - B
Duration: 3 hours

- Answer All Questions

Total Mark: 100

Question 1

(a)Complete: (i)If $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are all eigenvalues of a matrix A. Then $|\mathrm{A}|$ is.... (ii) A linear system $\mathrm{AX}=\mathrm{B}$ is called consistent if....
(b)If $A=\left[\begin{array}{rrr}0 & 2 & -1 \\ 1 & 3 & 0 \\ 1 & 0 & -2\end{array}\right], B=\left[\begin{array}{rr}2 & 2 \\ 0 & 1 \\ 3 & -1\end{array}\right]$. Find, if possible, $A+B, A \cdot A, B \cdot A, A+2 I,|A|$
(c) If $A=\left[\begin{array}{cc}2 & 1 \\ 4 & -1\end{array}\right]$. Find (i)The eigenvalues and eigenvectors of A
(ii) The eigenvalues of $f(A)=\ln \left(A^{2}+A\right)$
(iii) A^{n}

Question 2

(a)Solve the L.S: $2 \mathrm{x}-\mathrm{y}+\mathrm{z}=1,4 \mathrm{x}+2 \mathrm{y}+2 \mathrm{z}=3,-2 \mathrm{x}+3 \mathrm{y}-\mathrm{z}=0, \mathrm{x}+\mathrm{z}=2$
(b)Find S, S_{10} from: (i) $\sum_{r=1}^{\mathrm{n}}(\mathrm{r}+1)(2 \mathrm{r}+1)$
(ii) $\sum_{\mathrm{r}=1}^{\mathrm{n}} \frac{2}{\mathrm{r}^{2}+4 \mathrm{r}+3}$
(c)Using the mathematical induction, prove that:
(i) $1.1!+2.2!+3.3!+\cdots+n . n!=(n+1)!-1$
(ii) $y^{(n)}=\sin \left(x+\frac{n \pi}{2}\right)$ where $y=\sin x$
(d)If $z_{1}=1+i, z_{2}=-2+2 i$. Find $z_{1}+z_{2}, z_{1} \cdot z_{2}, \sqrt[2]{z_{1}},\left(z_{2}\right)^{7}$
(e)Using the binomial theorem, expand $\frac{1}{1-2 x+x^{2}}$.

Question 3

(a)Determine the locus of the middle points of chords of the parabola $y^{2}=4 a x$ which passes through vertex $(0,0)$.
(b)Prove that the equation $a x^{2}+2 h x y+b y^{2}+2 g x+2 \mathrm{fy}+\mathrm{c}=0$ represents two parallel lines if $h^{2}=a b$ and $a f^{2}=b g^{2}$.
(c)Find the equation of the bisectors for: $2 x^{2}+x y-3 y^{2}-6 x-14 y-8=0$
(d)Show that the equation $x^{2}+4 y^{2}+4 x+8 y-8=0$ represents an ellipse.

Determine its major, minor axis, foci and its vertices.

Question 4

(a)Derive the equation of the chord of the hyperbola $25 x^{2}-16 y^{2}=400$ which bisected at the point $(5,2)$.
(b)Find the equation of the circle which passes through the points $(8,9),(1,2)$ and cut the circle $x^{2}+y^{2}=25$ at a right angle.
(c)Trace the curve : $y^{2}+4 x+2 y-11=0$.
(d)Find the equation of hyperbola whose eccentricity is $5 / 2$ and focus at $(a, 0)$ and its
[1]Complete the following statements:
(a)A square matrix A is called symmetric if. \qquad
(b)A square matrix A has inverse if.
(c)The eigenvalues of a symmetric matrix of real numbers are. \qquad and the eigenvectors are. \qquad
[2]If $A=\left[\begin{array}{cc}1 & 3 \\ 1 & -1\end{array}\right]$. Find: (a)Find the eigenvalues and eigenvectors of A

$$
\text { (b)Find } \mathrm{A}^{\mathrm{n}}
$$

(c)Find the eigenvalues of $\mathrm{A}^{10}, 10^{\mathrm{A}}, \mathrm{A}^{-1}$
[3] If $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 0 & 2 & 1 \\ 1 & -1 & 3\end{array}\right]$. Show that A. A^{\wedge} is symmetric matrix.

Total Mark: 20
 Mathematics 1-B (Algebra)
 Time: 30 Minutes

[1]Complete the following statements:
(a)A square matrix A is called non-singular if. \qquad
(b)The determinant of a matrix exists if.
(c)If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are all eigenvalues of a matrix A, then $|A|$ is \qquad
[2]If $A=\left[\begin{array}{ll}0 & 1 \\ 3 & 2\end{array}\right]$. Find: (a)Find the eigenvalues and eigenvectors of A
(b)Find $A^{n} \quad$ (c)Find the eigenvalues of $\frac{10}{A^{2}+I}, \sqrt{A^{2}+2 I}$
[3] Find A^{2} where $A=\left[\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right]$

