Benha University Faculty of Engineering- Shoubra	· · · · ·	Final Term Exam Date: May 30, 2015			
Eng. Mathematics & Physics Department		Course: Mathematics 1 – B			
Preparatory YearAnswer All Questions The Exam const	sts of one page • No. of ques	Duration:3hourstions:4Total Mark:	100		
Question 1	sis of one page • No. of ques	tions. 4 Total Mark.	100		
	eigenvalues of a matrix A	A Then A is	2		
(a)Complete: (i)If λ_1 , λ_2 , λ_3 are all eigenvalues of a matrix A. Then $ A $ is (ii) A linear system $AX = B$ is called consistent if					
(ii)A linear system $AX = B$ is called consistent if					
(b)If $A = \begin{bmatrix} 0 & 2 & -1 \\ 1 & 3 & 0 \\ 1 & 0 & -2 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 2 \\ 0 & 1 \\ 3 & -1 \end{bmatrix}$. Find, if possible, $A + B$, $A.A`$, $B.A$, $A + 2I$, $ A $					
(c) If $A = \begin{bmatrix} 2 & 1 \\ 4 & -1 \end{bmatrix}$. Find (i) The eigenvalues and eigenvectors of A					
(ii)The eig	genvalues of $f(A) = \ln(A)$	$A^2 + A$) (iii) A^n	2+5		
Question 2					
(a)Solve the L.S : $2x - y + z = 1$, $4x + 2y + 2z = 3$, $-2x + 3y - z = 0$, $x + z = 2$					
(b)Find S, S ₁₀ from: (i) $\sum_{r=1}^{n} (r+1)(2r+1)$ (ii) $\sum_{r=1}^{n} \frac{2}{r^2+4r+3}$					
(c)Using the mathematical induction, prove that:					
(i) $1.1! + 2.2! + 3.3! + \dots + n.n! = (n+1)! - 1$ (ii) $y^{(n)} = \sin(x + \frac{n\pi}{2})$ where $y = \sin x$					
(d)If $z_1 = 1 + i$, $z_2 = -2 + 2i$. Find $z_1 + z_2$, $z_1 \cdot z_2$, $\sqrt[2]{z_1}$, $(z_2)^7$					
(e)Using the binomial theorem, expand $\frac{1}{1-2x+x^2}$.					
Question 3					
(a)Determine the locus of the middle points of chords of the parabola $y^2 = 4ax$ which passes through vertex (0, 0).					
(b)Prove that the equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents two					
parallel lines if $h^2 = ab$ and af^2	$c^2 = bg^2$.				
(c)Find the equation of the bisectors for: $2x^2 + xy - 3y^2 - 6x - 14y - 8 = 0$		6			
(d)Show that the equation $x^2 + 4y^2$	+4x + 8y - 8 = 0 repr	esents an ellipse.	7		
Determine its major, minor a	xis, foci and its v	vertices.			
Question 4					
(a) Derive the equation of the chord biasested at the point $(5, 2)$	of the hyperbola $25x^2$ -	$-16y^2 = 400$ which	7		
bisected at the point (5, 2).	ab magage through the set	(0, 0) $(1, 2)$ and and	6		
(b)Find the equation of the circle which passes through the points (8, 9), (1, 2) and cut the circle $x^2 + y^2 = 25$ at a right angle.					
(c)Trace the curve : $y^2 + 4x + 2y - 11 = 0$.					
(d)Find the equation of hyperbola whose eccentricity is $5/2$ and focus at (a,0) and its directrix is $4x - 3y - a = 0$.					
Good Luck	Dr. Mohamed Eid	Dr. Fathi Abdsallam			

Prep-Year	Mid-Term Exam	Model A	Ma	arch 23, 2015	
Total Mark: 20	Mathematics 1-	B (Algebra)	Time:	30 Minutes	
[1]Complete the followin	ig statements:				
(a)A square matrix A	is called symmetric if.				
(b)A square matrix A	has inverse if				
(c)The eigenvalues of a symmetric matrix of real numbers are					
and the eigenvector	rs are			•••••	
[2]If $A = \begin{bmatrix} 1 & 3 \\ 1 & -1 \end{bmatrix}$. Fin	nd: (a)Find the eigenval	ues and eigenvectors of	А		
	(b)Find A ⁿ	(c)Find the eigenvalues	of A ¹⁰ ,	$10^{\rm A}$, ${\rm A}^{-1}$	
[3] If A = $\begin{bmatrix} 1 & -1 & 1 \\ 0 & 2 & 1 \\ 1 & -1 & 3 \end{bmatrix}$. Show that A. A` is sy	mmetric matrix.			

Prep-YearMid-Term ExamModel AAMarch 23, 2015Total Mark: 20Mathematics 1-B (Algebra)Time: 30 Minutes[1]Complete the following statements:
(a)A square matrix A is called non-singular if.....
(b)The determinant of a matrix exists if.....
(c)If $\lambda_1, \lambda_2, ..., \lambda_n$ are all eigenvalues of a matrix A, then |A| is[2]If $A = \begin{bmatrix} 0 & 1 \\ 3 & 2 \end{bmatrix}$. Find:
(b)Find An
(c)Find the eigenvalues of $\frac{10}{A^2 + 1}$, $\sqrt{A^2 + 2I}$ [3] Find A² where $A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$